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Abstract

We investigate analytically and numerically the effects of tailoring the density profile in a

laser target in order to decrease imprinting of mass perturbations due to the long-wavelength modes.

Inverting the acceleration of the ablation front during the shock transit time could reduce the early-

time mass perturbation amplitudes developed in the target after the shock transit. This principle was

first suggested for mitigating the RT instability of imploding  Z-pinches [Velikovich et al., Phys.

Rev. Lett. 77, 853 (1996); Phys. Plasmas 5, 3377 (1998)].  As the shock wave slows down

propagating into higher density layers, the effective gravity near the ablation front has the same

direction as the density gradient. This makes the mass perturbations near it oscillate at a higher

frequency and at a lower amplitude than they normally would due to the “rocket effect” caused by

mass ablation [Sanz, Phys. Rev. Lett. 73, 2700 (1994); Piriz et al., Phys. Plasmas 4, 1117

(1997)]. So, tailoring density profiles instead of using flat densities is demonstrated to reduce the

“seed” mass perturbation amplitude at the onset of the exponential RT growth.

PACS numbers: 52.40.Nk, 52.35.Py
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I. INTRODUCTION.

A critical issue of direct-drive laser fusion program is mitigating the distortion of the

imploded pellet due to the Rayleigh-Taylor (RT) instability.1 The common approach is to deal

directly with the initial sources of the instability. Advances in improving optical smoothing of laser

beams and developing the pellet manufacturing technologies reduce the seed for the ablative RT

instability to a very low level. Still, even a small perturbation seed could be large enough to

preclude the achievement of high gain in the implosion.

To complement the two above direct means to the RT seed reduction, consider the following

approach. Suppose that the sources of mass perturbations, that is, the levels of the beam and target

non-uniformity, are given. Let us try to determine the structure of the pellet that minimizes the seed

for the RT instability produced by these two sources. Here, we limit ourselves to the relatively

simple case of structuring the target via radial density tailoring. The high gain implosion regime

imposes certain requirements on the thickness and the areal mass of the pellet, and the laser pulse

shape. We have to find a way to distribute the given mass within a layer of a given thickness (that

is, the way the density profile ρ(r) should be tailored) in order to minimize the early-time mass

perturbation amplitude. In general, the search for the most perturbation-resistant pellet structure

could include tailoring of both density and material composition, as well as adjusting the laser pulse

shape to the density/material structure.

It is known2, 3 that the fastest classical RT mode is localized near the accelerated surface, and

its growth rate is not sensitive to the density profile in the fluid. There are some indications4 that

density tailoring can help mitigate the target distortion due to the exponential RT instability

development, but this is not the effect studied here. In the present paper, we concentrate on the

early-time perturbation growth preceding the exponentiation phase. As shown from recent studies,5-

7 the evolution of perturbations at early times resembles the development of vorticity-driven

Richtmyer-Meshkov (RM) instability rather than the acceleration-driven RT instability. The mass

ablation turns out to be a sufficiently strong stabilizing effect to stop the RM-like perturbation

growth at all wavelengths (in contrast with the RT growth, which is only stabilized at sufficiently

short wavelengths1).  Due to the “rocket effect” caused by mass ablation,8, 9 mass perturbations

instead of growing linearly exhibit decaying oscillations. These oscillations, discussed in

connection with ablative RT instability8, 9, were first observed in numerical simulations of early-time

mass perturbation growth.1,5,6 They have been described by the analytical model of Ref. 7. The

initial surface roughness and laser beam non-uniformity evolve during the shock transit time into

mass perturbations. These mass perturbation amplitudes seed the RT growth, once the rarefaction

wave from the rear side of the target reaches the ablation front and the subsonic acceleration of the

target begins.

The role of density tailoring stems from the possibility to invert the acceleration of the

unstable interface during the shock transit time. If a shock wave is driven into increasing density,
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and slows down as it propagates, the ablation front that follows the shock front would be

decelerated, too. Hence, local gravity is in the same direction as the density gradient, and small

perturbations tend to oscillate (propagate as running gravitational waves along the accelerated

interface) rather than growing exponentially. This mechanism contributes to the oscillations

additionally to the “rocket effect” mentioned above. Consequently, it affects the early-time evolution

of perturbations by increasing characteristic frequencies of their oscillations. For a given level of

non-uniformity supplying the initial perturbations (e. g., lateral variation of laser intensity),

increased oscillation frequencies imply lower mass perturbation amplitudes at the onset of the

exponential RT growth.

Use of tailored density profiles for stabilization was recently proposed to mitigate the RT

instability development in imploding Z-pinches.10,11 As far as the perturbation growth is concerned,

the main difference between the laser-driven ablative acceleration and the electromagnetic plasma

acceleration in a Z-pinch10 is the purpose, and, by inference, the regime of acceleration. In a Z-

pinch plasma radiation source (PRS), the plasma is accelerated in order to convert its kinetic energy

into thermal at stagnation, and finally into radiation. Thus, the shock transit time might include all or

most of the implosion, as is the case for uniform fill or thick annular cylindrical loads. A shock-

driven acceleration is not feasible in direct drive laser fusion - too much pellet preheat prevents fuel

compression. The opportunity to affect the perturbation growth using the density tailoring is

therefore limited to the early time, while the shock and compressibility effects are still relevant.

Therefore, the ablation drive case requires a much more detailed study of the perturbation evolution.

As demonstrated below, the radial density tailoring affects perturbations whose wavelengths

are of order of, or less than the shell thickness. At early time, while the aspect ratio is large, the

spherical pellet is nearly planar for these perturbations. Therefore, in the present paper we study the

case of a planar geometry. This choice somewhat simplifies both analysis and numerics, but in no

way reduces the generality of the result. The stabilizing effect would work in the same way for

spherical geometry as it does for planar or cylindrical10 cases.

The paper is structured as follows. In Section II, we describe the dynamics of a shock wave

driven by an increasing ablation pressure into a tailored density profile, compare the 1-D simulation

results to the exact self-similar solution, and make analytical estimates for the evolution of

perturbations. Section III presents a numerical study of the perturbation evolution for the various

types of density tailoring, and Section IV concludes with a discussion.

II. THEORY

A. Self-similar unperturbed flows

Let us describe one-dimensional (1-D) gas dynamics of a shock-piston flow generated when

a shock wave is driven into a tailored density profile by a pressure that either remains constant or

increases with time. The piston could be visualized as an ablation front for laser acceleration, or as

the magnetic field/plasma interface, in a Z-pinch.10 We will find how the piston acceleration (in the
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x direction) depends on the relation between the rate of pressure increase and the shape of the

tailored density profile. Typically, the plasma represents a “heavy fluid”, accelerated by the pressure

of a “light fluid”, whether it be a low-density ablated plasma or a massless magnetic field, which

gives rise to the RT instability. However, the presence of a tailored density profile in a shock-piston

situation could reverse the direction of acceleration. In particular, if the pre-shock density increases

with time faster than the post-shock pressure, the interface accelerates opposite to the propagation

direction of the shock wave. During this time, the propagating shock wave keeps bringing new

layers of the initially resting gas into motion in the positive x direction. This has been previously

shown heuristically, using a 0-D snowplow model.10 In this Section, we will demonstrate the same

in a more rigorous way, with the aid of an exact self-similar solution, generalizing that obtained in

Ref. 12 and, in a slightly different form, in Ref. 13. Evolution of small perturbations on top of this

self-similar flow will be studied below – analytically in Section IIB and numerically in Section III.

Consider a half-space 0>x
 filled with an ideal gas whose density profile is tailored

according to a power law: χρρ )/()( 0 ∆= xx , where 0ρ  and ∆ are dimensional normalization

constants, and the constant dimensionless exponent 1−>χ  determines the shape of the profile. Let

a piston, which moves according to the power law

mtgtLtx m
p /)()( 0=≡ (1)

(here again, 0g  is a dimensional normalization constant, m is a dimensionless exponent) drive a

shock wave into the gas. In the reference frame where the piston is at rest, the 1-D motion of the

shocked fluid is described by the equations of continuity, adiabaticity, and motion:
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where u, ρ, p, and γ are the x-velocity, density, pressure, and adiabatic exponent of the shocked

gas, respectively. For m > 1, both the shock and the piston accelerate with time, so that local

gravity has negative direction, from the accelerated fluid to the piston. For m < 1, the shock and the

piston decelerate, and the local gravity is positive, directed from the piston to the fluid.

If the pre-shocked gas is cold, so that the shocks wave is strong at all time, then Eqs. (2)-
(4) admit an exact self-similar solution. Introducing a self-similar variable, ),(/ tLx=η  we use the

self-similarity ansatz
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where )( and ),( ),( ηηη PNU
 are dimensionless functions representing the self-similar profiles of

velocity, density, and pressure, respectively. With the aid of (5), the gasdynamic equations (2)-(4)

are reduced to a system of two ordinary differential equations, which has to be solved numerically,

as described in Appendix I.

As seen from Eq. (5), this solution is generated if the pressure at the piston is related to
either distance traveled by the piston or to time by a power law, e. g., .)( σttp p ∝  Comparing this

to (5), we find the value of m that corresponds to σ for a given χ:

2
2

+
+=

χ
σ

m . (6)

Equation (6) illustrates that the shock-piston flow accelerates the fluid when the pressure at the

piston rises faster than the density in the unperturbed fluid: m > 1 when σ  > χ. Otherwise, when
χσ < , the fluid is decelerated (m < 1). For instance, if the pressure rises linearly, 1=σ , then the

plasma layer of parabolic density (χ = 2) will be decelerated: m = 3/4. If the same linearly rising

pressure drives a uniform density profile (χ = 0), then the pre-shock density increases slower than

the post-shock pressure does, which means acceleration: m = 3/2.

The self-similar profiles of post-shock density and temperature in an ideal gas with γ  = 5/3

for these two cases are shown in Fig. 1. The density profile near the piston, at η << 1, has the

power-law asymptotic shape

,
2)2(
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which is typically sharper than the pre-shock profile. Since the pressure at 0∩η  must be of order

unity (
0~)( ηηP ), we find for the self-similar temperature profile: .~)(/)()( sNP −≡Θ ηηηη For

the above two cases, 1=σ , χ = 0 and 2, we find from (7): 3/2 and 7/2−=s , respectively. Then

the temperature vanishes and the density diverges near the accelerated piston (χ = 0, m = 3/2), and

vice versa, the temperature diverges and the density vanishes near the decelerated piston (χ = 2, m

= 3/4), cf. Figs .1 (a), (b) This is not surprising. The entropy of the fluid particles adjacent to the
piston is determined at ,0∩t  when the shock wave is formed. For m = 3/2, the shock velocity in

this limit tends to zero, and so do the post-shock temperature and pressure. The isentropic

compression that follows can make the pressure in these fluid particles finite only via infinite

increase of density. Conversely, for m = 3/4, the shock velocity in the limit 0∩t diverges, and so

does the post-shock temperature. Due to the subsequent isentropic compression, the temperature

there remains infinite afterwards.

Figure 2 presents a comparison of the self-similar density profile calculated for the case of

decelerated piston  ( 1=σ , χ = 2, m = 3/4) with those obtained in our simulations for similar

conditions. The simulated density profiles are seen to remain self-similar during the shock transit

time. The density gradient near the ablative piston in simulation is less steep than in the analytical

solution, because the temperature rises even faster than in Fig. 1(a), the ablation pressure being
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maintained primarily through the conductive heat flow from the corona. Also, in the computations

the density at x = 0 is finite. Nevertheless, the observed self-similarity supports our prediction that

the ablation front in this case is decelerated, as shown below in Section III.

B. Simple linear stability analysis

Now we assume that the piston driving the self-similar flow is an ablation front. Then the

driving pressure is created by a mass ablation through this front, so that we deal with a “leaky

piston” rather than a solid piston or a contact interface. Still, the self-similar solution of Section II.A
could be valid, once the ablation front is identified with some surface consta ==ηη  rather than

with the surface η = 0. Then the ablation velocity av , like all the characteristic velocities, is

proportional to tmLL /=
�

, where L is the distance traveled by the piston, see Eqs. (1), (5). We

introduce a dimensionless constant ν characteristic of the ablation rate:

tmL

va

/
=ν . (8)

Let us describe perturbations of the ablation front using a discontinuity model identical to

that of Piriz et al.9 The model involves another dimensionless characteristic of the ablation front,
the density ratio 12 / ρρ=Dr , where the subscripts 1 and 2 refer to the dense shocked plasma ahead

of and to the low-density plasma behind the ablation front, respectively. This parameter is also
supposed to be constant in time. Typically, 1<<Dr , so that the Atwood number across the ablation

front, )1/()1( DD rrA +−= , is close to unity. We modify the boundary conditions given in Ref. 9

for the case of time-dependent acceleration and ablation velocity, and require all the perturbations to

be localized near the ablation front or propagating from it, upstream or downstream. Then the

solution of the perturbation problem contains no perturbations incident on the front, only waves

outgoing from it. As shown in Appendix II, the boundary conditions in this case are reduced to

,0=−+ xaaa vxkvx
dt
d δδδ (9)
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where axδ  is the displacement amplitude of the ablation front, xvδ  is the perturbation of the axial

velocity at the ablation front, k is the perturbation wave number. The boundary condition (9) at the

ablation front is well known in the literature,14 the boundary condition (10) is derived in Appendix

II from the results of Ref. 9 under the above assumptions.

Introduce a new dimensionless independent variable [not to be confused with one of the

dependent variables, self-similar temperature Θ(η)]
mtkgtkL m /)( 0==θ . (11)

Substitution of (8), (11) and 2/)1()( tmmtkg θ−=  into Eqs. (9), (10) reduces this system to a

single equation for axδ :
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Solutions of this equation are expressed via the confluent hypergeometric functions. In particular,
the solution regular at t = 0 and satisfying the initial condition 0)0( xtxa δδ == is given by
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where ),,(11 zcaF  is the Kummer’s function.15

To analyze the properties of this solution, let us start with the simple case of negligible effect

of mass ablation, obtained from (13) in the limit 0→ν . In this limit, the Kummer’s function is

reduced to the Bessel function (Ref. 15, Eq. 13.5.13):
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Since A > 0, the evolution of perturbations is determined primarily by the sign of 1- m, that is, by

the direction of acceleration of the interface. If m < 1, so that the interface is decelerated, and there

is no reason for the RT instability to develop, then the argument of the Bessel function in (14) is
real. At late time ( )1>>θ , the perturbations oscillate:
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The amplitude of oscillations, as seen from Eq. (15), is slowly growing. A qualitative explanation

of this is found in Ref. 10: amplitude of a pendulum oscillating in a slowly decreasing gravitational

field increases.

For m > 1, the interface is accelerated, and therefore, is RT unstable. In this case, in Eq.

(14) we have a modified Bessel function, which describes exponential growth instead of

oscillations at late time:
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For the particular case of constant acceleration (m = 2), Eq. (14) yields
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as it should be. The perturbation growth described by Eq. (14) for the cases of m = 3/4 and m = 3/2

is shown in Fig. 3(a).

Introduction of mass ablation (finite ν) changes the picture qualitatively. Now the

asymptotic behavior of solution (13) at late time is15
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The solution describes decaying oscillations for any sign of acceleration. It is qualitatively similar to
the particularly simple case of zero acceleration [ , ,1 0tkvm == θ where 0v for this case is an

appropriate replacement of 0g  in the definition (1)]:
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cf. Ref. 7. The evolution of perturbations described by Eq. (13) for the cases of m = 3/4 and m =

3/2 and ν = 0.05 is shown in Fig. 3(b). The only difference between the cases of acceleration (m =

3/2) and deceleration (m = 3/4) is that in the former case the perturbation amplitude reaches a higher

peak value and oscillates at a lower frequency.

Stabilization of all modes in all acceleration regimes is explained with the aid of the

dispersion relation obtained in Ref. 9 (self-consistent derivations of similar relations are found in

Refs. 8, 16). The exponential growth rate for ablative RT instability is found to be equal to

D
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D r

kv
vk

r
A

Agk
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2
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This expression follows from Eqs. (9), (10) if the ablation velocity and acceleration, av  and g, are

assumed constant. For the wavenumbers exceeding a cut-off value ck , the instability is fully

suppressed. Equation (20) demonstrates that the cut-off wavelength is determined by the balance of

the two terms in parentheses,8 gkrvk Da >/22 , rather than by the balance of the whole term in

parentheses and the second terms in the right-hand side of Eq. (20), gkkva > , since .1<<Dr  For

k exceeding the cut-off value, Eq. (20) predicts exponentially decaying oscillations. Qualitatively,

this stabilization mechanism is described in Ref. 9. It is based on the fact that the ablation front is an

isotherm.17 When the front moves into a higher temperature area, its temperature therefore does not

increase, but the temperature gradient near it does. Increased temperature gradient speeds up the

mass ablation, producing the “rocket effect”9 responsible for the oscillations that tend to decrease

the perturbation.

For our self-similar acceleration regimes, 2222 −∝ m
a tvk , whereas 2−∝ mtgk . Since m is

positive, 22
avk  grows with time faster than gk. If g is positive (m > 1, acceleration), then eventually

Da rvk /22  exceeds gk, and the exponential perturbation growth evolves into decaying oscillations.

Otherwise, if g is negative (m < 1, deceleration), we have decaying oscillations from the start, see

Eq. (20). This is exactly what is described by Eqs. (13), (18), (19), and illustrated by Fig. 3(b).

To summarize, we have predicted decaying oscillations instead of exponential perturbation

growth for all wavelengths and all acceleration regimes subject to self-similarity restriction. This is a

physically meaningful conclusion that could be tested in simulation and experiment. In contrast with

that, neither the prediction of the exponential decay of perturbation, nor the calculated rates of decay

should be taken very seriously. The reason is that our simplifying assumption that no external

perturbations come to the ablation front as incident waves [see Eq. (A17)] is not fully justified.
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Actually, the plasma that reaches the ablation front has first passed through the rippled shock front.

The plasma particles therefore bring to the ablation front the perturbations of vorticity left after the

shock passage. The incident perturbations also decay with time, but much slower than

exponentially. For instance, in the case of zero acceleration (m = 1), the perturbations oscillate and

decay as Bessel functions of time, that is, as 2/1−t  or 2/3−t , depending on whether the shock wave is

strong or not.18 If the ablation front is RT unstable, then this power-law source of external

perturbations does not change the exponential growth rate. This is why the incident perturbations

could be safely neglected when the expressions for the growth rate like (20) are derived (if the

resulting growth rate is positive). If there is no exponential RT growth, this approximation is no

longer justified. Therefore, the exponential decay rates estimated above have little physical

significance. Still, the corresponding oscillation frequencies are physically meaningful because they

describe the immediate pressure response to the perturbation of the ablation front due to the “rocket

effect”.9

The complicated early-time evolution of perturbations generates the seeds for the exponential

RT instability development that starts after the shock transit time. We are interested in designing our

target so that the given external perturbations (e. g., lateral non-uniformity of the laser beam)

generate as small mass perturbation seeds as possible. This is where the tailored density profiles can

help. Tailoring the initial density profile makes g negative from the start. As shown above [e. g.,

see Fig. 3(b)], this increases the frequency of oscillations of the ablation front and decreases the

peak perturbation amplitude. We expect this effect to help decrease the perturbation amplitudes at

the time when the RT instability starts to develop. Simulation results presented in the next Section

demonstrate that this indeed could be done.

III. NUMERICAL SIMULATION

The simulations were performed in two dimensions (2-D) using the FAST hydrocode.19 This

code has proved to be very robust over a wide range of problems, including reactive flows,20

turbulent jets,21 flows about ship superstructure,22 and RT instabilities in inertial confinement fusion

targets.23 In the studies of the early-time perturbation growth in laser targets, the FAST code has

proved effective at reproducing experimental observations of laser imprinting24 and at predicting the

oscillations due to the “rocket effect”.1,6  The code includes flux-corrected transport (FCT)

advection,25 inverse bremsstrahlung laser energy absorption (multiple ray trace), and Spitzer-Härm

thermal conduction.26 Radiation transport and tabulated equation of state (EOS) are also included in

the code. These, however, have not been invoked in the simulations reported below. Our goal is to

demonstrate the hydrodynamic effect of density tailoring alone, without any contribution of

smoothing due to radiation transport or EOS effects. We simulate ablative acceleration of CH

(plastic) targets.

We compare four target structures that differ mainly by their density profiles, see Fig. 4(a).

[Note that in the simulations, the laser radiation comes from the positive x direction, accelerating the
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target to negative x (the coordinate x emulates r in spherical geometry), a different sign from that

chosen in Section II. This should not cause any confusion, since all the results of Section II are

invariant under the substitution xx −↔ . ]

All the targets have the same areal mass 68.2 µm�g/cm3. Targets 1 to 3 have also the same total

thickness, 140 µm. The front part of target 1 approximates the parabolic density profile of Section

II (χ = 2). Density profile starting from ρ = 0 is not realistic in target design, so that the actual

density profile of target 1 is

( )
2

010)( 







∆
−+= x

x ρρρρ , (21)

where 3
0 g/cm 05.0=ρ  (a foam of this low density could be manufactured; this value is just about

the critical density for KrF laser radiation), 3
1 g/cm 07.1=ρ  (solid plastic density), ∆ = 120 µm,

followed by a 20 µm payload of solid plastic [we also did some runs for the initial density profile

(21) without adding the payload].  In target 2, the areal mass contained in the profile (21) is

uniformly distributed over the same thickness, 120 µm, which corresponds to a uniform density
3g/cm 39.0=ρ , and followed by the same 20 µm payload.  In target 3, the total mass 68.2

µmξg/cm3 is uniformly distributed with the constant density 3g/cm 487.0=ρ , over the same total

thickness, 120 µm + 20 µm = 140 µm. Finally, the solid plastic target 4 has the same total mass,

and, therefore, is 63.7 µm thick, that is, thinner than the other three.

The targets are driven by a 0.248 µm KrF laser radiation, as in Nike laser at the Naval

Research Laboratory.27 Two shapes of laser pulse are used. One is selected to provide in target 1 a

linear increase of pressure from 0 to 4 Mbar during the shock transit through the density profile

(21), that is, in the first 4 ns [Fig. 4(b)], after which the laser intensity is held constant. This pulse

shape, as expected from the results of Section II and demonstrated in Fig. 5 below, at early time (<

4 ns) produces a decelerating ablation front in target 1, and an accelerated ablation front in targets 2

to 4. The other laser pulse shape studied here is a constant incident laser intensity, which

corresponds to the ablative pressure slowly decreasing from  2.75 Mbar to 1.75 Mbar at 10 ns due

to increased absorption in the plasma corona. Here again, the ablation front in target 1 at early time

must be decelerating. In other targets, however, we expect zero acceleration, or even a small

deceleration (due to decreasing pressure). Of course, the theory of Section II does not extend to the

situation after the shock wave breaks out at the rear surface of targets 1, 3, 4, or is reflected from

the payload boundary of target 2. There is no analytical theory available to describe perturbation

growth during the reverberation of shock and expansion waves, which eventually leads to the

subsonic acceleration regime. Here, we have to rely on the simulation results.

To facilitate comparison between various cases, we introduce a constant single-mode lateral

variation of the incident laser intensity. Evolution of perturbations studied below, therefore,

corresponds to laser imprinting of mass perturbations. As explained in Ref. 6, the early-time

perturbation growth due to the surface roughness is physically equivalent to that produced by the
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laser imprint. The difference is only in the initial conditions: in the former case, we create initial

amplitude of the perturbation, whereas in the latter we supply the perturbation with initial

momentum. The perturbation growth that follows is governed by the same physics and could be

scaled from one case to another. With tailored density profiles, the same amplitude of surface

ripples would imply a 20-fold difference in the initial mass variation between targets 1 and 4.

Below, we have all the targets initially uniform, driven by laser pulses with the same lateral

intensity variation, so that the comparison between the targets is deemed fair. For each target/laser

pulse shape combination, we run the code with single-mode perturbation wavelengths of 15 µm, 30

µm, and 60 µm.

Figure 5 is plotted for targets 1 (a) and 2 (b) driven by a linearly increasing ablative

pressure. It shows the x-t trajectories of fluid particles, that give an idea about the motion of the

ablation front. We see that at early time the ablation front in target 1 is indeed decelerated, as

predicted in Section II.A. Similarly, we demonstrate that for all the other targets, the ablation front

is accelerated by the linear pressure increase from the beginning of the laser pulse.

Figures 6 to 8 compare the evolution of mass perturbations between targets 1 to 4, all of

them driven by a laser pulse with linearly increasing ablative pressure, and a 0.2% rms single-mode

lateral intensity variation, λ = 15 µm, 30 µm, and 60 µm, respectively. Here, the early time (shock

transit) corresponds to the first 4 ns, whereas the “late time”, when the RT instability of acceleration

develops exponentially, starts somewhere between 6 and 8 ns.

For all cases, the qualitative behavior agrees with the predictions of Section II.B. The mass

perturbations tend to oscillate, no matter whether the ablation front is accelerated or decelerated,

although for the latter case (target 1) the frequency of oscillations is notably higher, and the

amplitude lower. We even observe some [albeit non-exponential, cf. Fig. 3(b)] decrease in the mass

variation amplitude for the shortest perturbation wavelength λ = 15 µm, see Fig. 6. Although we

have not studied the scaling of oscillation frequencies with the perturbation wavelength [in terms of
the discontinuity model of Ref. 9 and Appendix II, even the scaling of λ with Dr  is not known for

tailored density profiles], one can naturally expect longer perturbation wavelengths to correspond to

lower frequencies. This is indeed the case. During the shock transit time, we have multiple

oscillations in target 1 for λ = 15 µm, one full cycle for λ = 30 µm, and half cycle for λ = 60 µm.

For all the other cases, we have no more than a half cycle.

Eventually, the oscillatory behavior evolves into an exponential growth for all targets. The

RT exponential growth rates gk=Γ are essentially the same for all targets, since they are driven

by the same ablative pressure, have the same mass, and therefore experience the same acceleration.

There is, however, a significant difference between the targets in the amplitudes of these

exponentially growing modes. This is precisely the difference in the seeds for RT discussed above.

Firstly, we notice that the perturbations in the solid target 4 are consistently higher than in the other

three. This clearly illustrates the beneficial effect of decreasing the average density of the target. The
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effect has nothing to do with radiative smoothing of perturbations (recall that to emphasize this

point, we have no radiation transport here), it is purely hydrodynamic, as explained in Ref. 6.

Secondly, the perturbations in target 1 containing a tailored density profile are consistently lower

than in the other three. Evolution of perturbations in targets 2 and 3, 4 is differently affected by the

shock/rarefaction reverberations (a material interface in target 2 causes an additional shock

reflection), and thereby phase-sensitive: target 2 produces, a higher or a lower RT seed than target 3

for λ = 30 µm and λ = 60 µm, respectively, whereas for λ = 15 µm both perform similarly. In

contrast with this, target 1 always produces the lowest RT seed, which agrees with the results of

Section II.B. The stabilizing effect of radial density tailoring is generally more effective for shorter

wavelengths (at least a half cycle of oscillations has to be completed during the shock transit time,

cf. Figs. 6-8), but it does not otherwise discriminate between the perturbation wavelengths. In other

words, the effect is sufficiently robust.

This conclusion is confirmed by inspection of Figs. 9 to 11, plotted for a constant intensity

laser drive, all the other conditions being the same as in Figs. 6 to 8, respectively. Here,

acceleration of targets 2 to 4 at early time is very low. We observe oscillations due to sonic waves

propagating in the lateral direction, as in the other cases of the RM-like instability development.5-7

Otherwise, the situation is quite similar to that presented in Figs. 6 to 8: the tailored density target 1

is consistently the best, the uniform solid target 4 is the worst, whereas the double-slab target 2 and

the low-density uniform target 3 are somewhere in between, their relative performance depending

on the perturbation wavelength.

Figures 12, 13 that show density perturbation maps of 
x

ρρ − , where 
x

ρ  is the

average of the density over y at a given x, in targets 1 and 3 at various instants of time, help to see

why the mass perturbations are lower in a target with a tailored density profile. In target 1, at early

time the density perturbation is spread over a wide plasma volume. The oscillations tend to

distribute the extra density more uniformly. The bubble-spike structure, distinct for a developed

single mode RT instability, is only formed at late time. In target 3, the bubble-spike structure,

developing from the start, oscillates as a whole. During the oscillation half cycle, the bubbles and

the spikes exchange places, but they are always present. Consequently, the mass perturbations are

more localized in target 3 than in target 1, and it counts when the RT growth (which is precisely the

growth of localized mass perturbations) starts.

IV. CONCLUSIONS

Radial tailoring of initial density profiles in laser targets inverts the acceleration of the

ablation front at early time, thereby increasing the frequency and decreasing the amplitude of its

oscillations. This effect reduces the seed for the exponential RT instability growth generated by a

given lateral non-uniformity in the laser drive in a target of given mass and thickness. A significant

reduction in the seed mass perturbation amplitude in a target with a tailored density profile in our
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simulations was found for all perturbation wavelengths, compared to a uniform target of the same

mass and thickness, at the level of at least 5 or more.

The stabilizing effect of density tailoring is purely hydrodynamic. In a way, it complements

a related, but different, stabilizing hydrodynamic effect of decreasing the initial density of the target,

which also reduces the seed for the RT instability.6 If the target design includes low-density outside

foam layers and more dense inner plastic or DT layers, then, as demonstrated in our simulations, a

smooth transitions from low to high initial density provides a significant reduction in the RT seed

compared to the case of two adjacent layers of different densities.

Our present results suggest the next step. A tailored density profile should be incorporated

into a high-gain target design for direct-drive laser fusion, and an

implosion of such a target should be simulated with all the relevant physics included, to see whether

we could indeed expect a robust reduction in the net mass variation at stagnation. This work is now

in progress.
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Appendix I. Self-similar solution for the shock-piston flow with a tailored

density profile.

Substituting the ansatz (5) into Eqs. (2)-(4) and introducing a new self-similar variable by
)}()](/{[)()( ηηηηγη NUPS −= , we obtain the following system of ordinary differential equations

for the self-similar variables:

,0
ln

)( =++− χ
ηη

η
d
dU

d
Nd

U (A1)
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2
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md
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η
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Substituting (A3) into (A2), we obtain

.
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)1()2(]2)1([)1(ln
USUm

mmUmmSm
d

Sd
−−+

−+−+−+−++−=
ηη

γηγχ
η

(A4)

The two equations (A3) and (A4) must be solved numerically. Note that N(η) does not enter Eqs.

(A3)-(A4). In a general case, once a solution of Eqs. (A3), (A4) is found, N(η) could be expressed

via U(η) and S(η) from Eqs. (A1)-(A2) as

( ) 2)1(

2)1(
2)1(

)1(

−+
+−

−+
+

−⋅= γ
γχ

γ
χ

η m

m
m

m

USconstN
(A5)

(the adiabaticity integral), where the constant is determined from the boundary conditions at the
shock front. In a particular case of )1/(2 += γm  (for γ = 5/3, this is our case of decelerated piston),

the integral (A5) cannot be used, but instead Eq. (A2) is immediately integrated to obtain

.)()( γηη −−⋅= UconstS  Then this expression for S(η) is substituted into Eq. (A3), which must be

integrated together with (A1). In either case, we have to solve two coupled ordinary differential

equations.
The boundary condition at the piston, 0→η , is 0→U , hence, ∞→S . Then we find

from (A3) that near η = 0

.
22

~ η
γ

χ
m

mm
U

+−− (A6)

After the shock formation, the gas near the piston is compressed (decompressed) if the coefficient in

the right-hand side of Eq. (A6) is negative (positive). Substituting (A6) into (A4), we find an

asymptotic expression for S(η):

2)2(

)1(
 

0~ −++
+−

⋅ m

m

SS χγ
χγ

η , (A7)

where 0S  is a constant to be determined. Substituting (A6) and (A7) into the integral (A5), we

derive Eq. (7).
The boundary conditions at the shock front, at sηη = , are the same as in Ref. 13:

1

12
)(

+
+−

=
γ

γη
η s

sU , (A8)
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1

)1(2
)(

+
+

=
γ
ηγ

η s
sS . (A9)

The self-similar coordinate of the shock front, sη , is not known in advance. The two

constants, sη and 0S  in Eq. (A7), must be chosen to select a solution of Eqs. (A3), (A4) that

satisfies two boundary conditions (A8), (A9). This is done by the shooting method. For instance,
one can select a trial value of 0S  and use the asymptotic expressions (A6)-(A7) to start integration

of Eqs. (A3), (A4) from some small but finite η until 1)1)/(-(2  equals  )( ++ γγηηU  so that the

boundary condition (A8) is satisfied at some value of η approximating sη . Then we see if the left-

hand side of Eq. (A9) is larger or smaller than its right-hand side, adjust the value of 0S

accordingly, and the procedure is repeated until it converges. This method was used to plot the self-

similar profiles shown in Figs. 1, 2.

Appendix II. Boundary conditions at the ablation front.

We derive the boundary conditions at the ablation front for the case of time-dependent

acceleration and ablation velocity, from those given in Ref. 9. Our notation is slightly different from

that of Ref. 9. We suppose the plasma to be driven in the positive x direction, and the small
perturbations )exp(iky∝  (the exponential factor is omitted below) to be imposed in the x-y plane.

In the reference frame of the ablation front, velocity of the plasma is thus negative, equal to
  and 21 vv −− upstream and downstream from the ablation front, respectively. By definition,

avv ≡1 ; due to mass conservation in the quasi-steady ablation front, 1// 2112 <<≡= Drvvρρ . The

physical assumptions of Ref. 9 remain unchanged. Both characteristic velocities, 21  and vv , are

much less than the respective sound speeds; thermal conduction is strong downstream and

negligible upstream, the ablation front is an isotherm. Then the linearized equations of continuity,

motion, and energy yield the following boundary conditions:

221121 )( xxa vvx
dt
d δρδρδρρ −=− , (A10)

aDyy xrikvvv δδδ )1(221 −−=− , (A11)

,0)()(2 21211121 =−−−−− axx xgvvvpp δρρδδρδδ (A12)

aDxx xrkvvv δδδ )1(221 −−=−
. (A13)

Here, 
yx vvp δδδ  and  , are perturbations of pressure, axial and lateral velocity, and the subscripts 1

and 2 refer to the high-density (upstream) and low-density (downstream) plasmas separated by the

ablation front, respectively. Under the assumptions outlined above, density perturbations drop out

from the boundary conditions.

Substituting (A13) into (A10), we obtain Eq. (9). From (A12), (A13), we find:

( ) 02)1( 21
2

1

2

1

1 =−−−− aD xvvkgkr
pkpk δ

ρ
δ

ρ
δ

. (A14)

We have to exclude the variables referring to the downstream state. Assuming that no

perturbations are incident onto the ablation front from the plasma corona (from downstream), one
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can find the dependence between the downstream perturbation amplitudes
   and  ,  , 222 yx vvp δδδ

from the dispersion relations for the outgoing waves.9 After some algebra, we

obtain:

22
1

2
yaxD vikvv

dt

d
r

pk δδ
ρ
δ −−= . (A15)

In (A15), we express 2xvδ  from (A13), 2yvδ  from (A11), substitute the resulting expression for

2pδ  into (A14), and simplify it with the aid of (9). We are left with a boundary condition that relates

only the perturbations of the upstream flow variables, so that the subscript 1 in the perturbation

amplitudes could be omitted:

   .0)( 
)1(

)1( 22

1

=




∝ −+++








−

−
−+ xxDyxaaa

D

D
D vv

dt

d
rvivkvxgkvk

r

r
r

pk
δδδδδ

ρ
δ

(A16)

This is a more general form of the boundary condition sought for.  It could be used to describe the

effect of perturbations incident to the ablation front from the dense plasma (in this case,

yx vvp δδδ  and , , are independent variables). The stabilizing “rocket effect” of Ref. 9 is expressed by

the term proportional to Da rvk /22  in the left-hand side of Eq. (A16): a displacement axδ  of the

ablation front generates a negative contribution to the pressure response axδ−∝  that tends to

decrease the displacement.

To derive Eq. (10), we have to make an additional assumption that no perturbations are

incident onto the ablation front from the upstream, thus neglecting the vorticity perturbations that
arrive with the plasma particles. Then the perturbation amplitudes    and  ,  , yx vvp δδδ are connected

via the dispersion relation for sonic waves propagating upstream:

.     ,
1

xyxax vivvkvv
dt

dpk δδδδ
ρ
δ −=+= (A17)

Substituting (A17) into (A16), we obtain (10).
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Fig. 1. Self-similar profiles of density N (thick lines), pressure P and temperature Θ for the

shock-piston flows driven by a linearly rising pressure (the self-similar coordinate η is normalized

with respect to the shock coordinate, sη ):  (a) tailored (parabolic) initial density profile (χ = 2),

deceleration (m = 3/4);  (b) uniform density profile (χ = 0), acceleration (m = 3/2).
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Fig. 2. Self-similar density profile of Fig. 1(a) (thick solid curve) compared to the density profiles

obtained in a simulated ablatively driven shock-piston flow that approximately corresponds to the

same parameters (χ = 2, m = 3/4). Simulation results (13 thin solid and dotted curves) are

calculated during the shock transit time for this target, between 1.5 and 3.5 ns. The flow profiles

are seen to be approximately self-similar.
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Fig. 3. Evolution of perturbations of the ablation front given by (13) for 05.0=Dr , 9.0=A , m =

3/4 and m = 3/2 (thin and thick solid curves, respectively): (a) no mass ablation, ν ♦  0; (b) with

mass ablation, ν = 0.05.
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Fig. 4. (a) Initial density profiles in targets: parabolic (1) and low-density uniform (2) profiles

followed by a solid payload; all-uniform low-density (3) and solid plastic density (4) profiles. (b)
Laser pulse shape selected to make ablative pressure increase linearly with time from ns 2.01 =t  to

αIpt ∝=   :ns 42 , where α = 0.75, so we choose [ ]{ } ααα /1

121221 )/()()()( ttttIttItI −−+−= ,

where 21 2
1  W/cm103⋅=I  and 21 3

2  W/cm109.1 ⋅=I . The pressure rise is indeed approximately

linear in time.
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Fig. 5. x-t diagrams for plasma particles labeled by their initial mass coordinates for: (a) target 1

with a parabolic density profile; (b) target 2 with a low-density uniform profile; both followed by a

solid density payload. The upper envelope curve of the high-density area is the ablation front. At

early time, in the parabolic density target, this curve is convex, which implies deceleration.
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Fig. 6. Time evolution of areal mass variation (µmξg/cm3) in targets 1 to 4 driven by the laser

pulse of Fig. 4(b), with a 0.2% rms single-mode lateral intensity variation at  15=λ µm.
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Fig. 7. Time evolution of areal mass variation (µmξg/cm3) in targets 1 to 4 driven by the laser

pulse of Fig. 4(b), with a 0.2% rms single-mode lateral intensity variation at  30=λ µm.
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Fig. 8. Time evolution of areal mass variation (µmξg/cm3) in targets 1 to 4 driven by the laser

pulse of Fig. 4(b), with a 0.2% rms single-mode lateral intensity variation at  60=λ µm.



27

0 2 4 6 8 10
10

-4

10-3

10-2

10
-1

100

101

102

3

3

2
2

1

4

1

1

Constant Laser Power
0.2% perturbation of λ=15µ

(1)
(2)
(3)
(4)

t[ns]

Fig. 9. Time evolution of areal mass variation (µmξg/cm3) in targets 1 to 4 driven by the laser

pulse of constant intensity, with a 0.2% rms single-mode lateral intensity variation at  15=λ µm.
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Fig. 10. Time evolution of areal mass variation (µmξg/cm3) in targets 1 to 4 driven by the laser

pulse of constant intensity, with a 0.2% rms single-mode lateral intensity variation at 30=λ  µm.
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Fig. 11. Time evolution of areal mass variation (µmξg/cm3) in targets 1 to 4 driven by the laser

pulse of constant intensity, with a 0.2% rms single-mode lateral intensity variation at 60=λ  µm.
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Fig. 12. Density perturbation maps of 
x

ρρ −  in a tailored density target 1 driven by a laser

pulse of Fig. 4(b) with a 15 µm perturbation wavelength at different times: (a) 1.5 ns; (b) 2 ns; (c)

4.5 ns; (d) 10 ns.
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Fig. 13. Density perturbation maps of 
x

ρρ −  in a uniform density target 3 driven by a laser

pulse of Fig. 4(b) with a 15 µm perturbation wavelength at different times: (a) 1.5 ns; (b) 2 ns; (c)

4.5 ns; (d) 10 ns.


